It is generally well recognized that in the course of a grain boundary (GB) diffusion experiment the diffusion of solute atoms in grain boundaries must exhibit a strong time-dependent segregation. But there has been no clear understanding of exactly how this time dependence develops. In this chapter, we review and analyse transient solute GB diffusion by means of the computer simulation technique of Lattice Monte Carlo (LMC). This technique has been successfully used on numerous occasions for the purposes of systematically studying the GB transition regimes that occur between the principal well-defined Harrison GB kinetics regimes (A, B and C-Types). Recently, the analysis using LMC has been extended to the case of solute GB diffusion when the segregation factor is independent of time. In the present paper, we analyse two cases of solute segregation in GB diffusion: first, where the solute atoms are homogeneously distributed along the tracer source plane but their mobility is not high at this plane; and the second, where the mobility of the solute atoms along the tracer source plane is comparable to their mobility along the GB. It is shown that the time dependence of the segregation can contribute significantly into the resulting values of the triple-product that is usually obtained experimentally in the Harrison Type-B kinetics regime.