Diffusion is a fundamental process that can have an impact on numerous technological applications, such as nanoelectronics, nuclear materials, fuel cells, and batteries, whereas its understanding is important across scientific fields including materials science and geophysics. In numerous systems, it is difficult to experimentally determine the diffusion properties over a range of temperatures and pressures. This gap can be bridged by the use of thermodynamic models that link point defect parameters to bulk properties, which are more easily accessible. The present review offers a discussion on the applicability of the cBX model, which assumes that the defect Gibbs energy is proportional to the isothermal bulk modulus and the mean volume per atom. This thermodynamic model was first introduced 40 years ago; however, consequent advances in computational modelling and experimental techniques have regenerated the interest of the community in using it to calculate diffusion properties, particularly under extreme conditions. This work examines recent characteristic examples, in which the model has been employed in semiconductor and nuclear materials. Finally, there is a discussion on future directions and systems that will possibly be the focus of studies in the decades to come.