Mixed oxide‐ion and electronic conductivity can be exploited in dense ceramic membranes for controlled oxygen separation as a means of producing pure oxygen or integrating with catalytic oxidation. Atomistic simulation has been used to probe the energetics of defects, dopant‐vacancy association, nanoscale cluster formation, and oxide‐ion transport in mixed‐conducting CaTiO3. The most favorable energetics for trivalent dopant substitution on the Ti site are found for Mn3+ and Sc3+. Dopant‐vacancy association is predicted for pair clusters and neutral trimers. Low binding energies are found for Sc3+ in accordance with the high oxide‐ion conductivity of Sc‐doped CaTiO3. The preferred location for Fe4+ is in a hexacoordinated site, which supports experimental evidence that Fe4+ promotes the termination of defect chains and increases disorder. A higher oxide‐ion migration energy for a vacancy mechanism is predicted along a pathway adjacent to an Fe3+ ion rather than Fe4+ and Ti4+, consistent with the higher observed activation energies for ionic transport in reduced CaTi(Fe)O3–δ.