BACKGROUND
Postoperative delirium, particularly prevalent in elderly patients after abdominal cancer surgery, presents significant challenges in clinical management.
AIM
To develop a synthetic minority oversampling technique (SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.
METHODS
In this retrospective cohort study, we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022. The incidence of postoperative delirium was recorded for 7 d post-surgery. Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not. A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium. The SMOTE technique was applied to enhance the model by oversampling the delirium cases. The model’s predictive accuracy was then validated.
RESULTS
In our study involving 611 elderly patients with abdominal malignant tumors, multivariate logistic regression analysis identified significant risk factors for postoperative delirium. These included the Charlson comorbidity index, American Society of Anesthesiologists classification, history of cerebrovascular disease, surgical duration, perioperative blood transfusion, and postoperative pain score. The incidence rate of postoperative delirium in our study was 22.91%. The original predictive model (P1) exhibited an area under the receiver operating characteristic curve of 0.862. In comparison, the SMOTE-based logistic early warning model (P2), which utilized the SMOTE oversampling algorithm, showed a slightly lower but comparable area under the curve of 0.856, suggesting no significant difference in performance between the two predictive approaches.
CONCLUSION
This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods, effectively addressing data imbalance.