Reaction conditions for the synthesis of monoglycerides (MG) by enzyme-catalyzed glycerolysis of rapeseed oil using Lipozyme ® IM have been studied. Silica gel was used to adsorb the glycerol to overcome the problems of low glycerol solubility in the organic phase. An experimental design was used where temperature, time, the ratio of silica gel to glycerol (w/w), the water activity (a w ), the isooctane concentration, and the ratio of glycerol to triglycerides (mol/mol) were varied. Response surface methodology was used to evaluate initial reaction rate and yield for the different products. The best yield of MG achieved under the studied conditions was 17.4% (mol fatty acid in substance/total mol fatty acid in mixture) (75°C, 20 h, silica gel/glycerol 2:1, a w = 0.17, 48% isooctane, glycerol/ triglycerides 6:1). The same conditions yielded 36.8% diglycerides, 13.6% free fatty acids (FFA), and 36.9% triglycerides. This is at the same level as the equilibrium yield. The yield of MG is low compared to the final yield achieved with solidphase glycerolysis. However, in solid-phase glycerolysis the reaction mixture becomes solid, and therefore the solid-phase process is not suitable for industrial application. The formation of FFA was very fast compared to the synthesis of MG. Equilibrium for FFA was reached within 2 h, and the yield was strongly affected by the a w . Increasing a w greatly increased the formation of FFA. In the a w ratio 0.06-0.3, the yield of FFA increased from 4 to 19% while the yield of MG was nearly unaffected. As FFA is an undesired product, it is important to keep the a w as low as possible.Paper no. J8908 in JAOCS 76, 701-707 (June 1999).