2020
DOI: 10.48550/arxiv.2011.10015
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

DiffusionNet: Accelerating the solution of Time-Dependent partial differential equations using deep learning

Mahmoud Asem

Abstract: We present our deep learning framework to solve and accelerate the Time-Dependent partial differential equation's solution of one and two spatial dimensions. We demonstrate DiffusionNet solver by solving the 2D transient heat conduction problem with Dirichlet boundary conditions. The model is trained on solution data calculated using the Alternating direction implicit method. We show the model's ability to predict the solution from any combination of seven variables: the starting time step of the solution, ini… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 7 publications
0
0
0
Order By: Relevance