1985
DOI: 10.1007/bfb0075847
|View full text |Cite
|
Sign up to set email alerts
|

Diffusions hypercontractives

Abstract: tous droits réservés. L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.num… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

11
1,105
0
6

Year Published

2000
2000
2018
2018

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 991 publications
(1,122 citation statements)
references
References 7 publications
11
1,105
0
6
Order By: Relevance
“…1.16.1]. This approach, using curvature dimension conditions to obtain gradient bounds, was initiated in Bakry andÉmery [BE85]. The curvature dimension condition on graphs, the non-diffusion case, was first introduced by Lin and Yau [LY10] which serves as a combination of a lower bound of Ricci curvature and an upper bound of the dimension, see Definition 2.4 for an infinite dimensional version CD(K, ∞).…”
Section: Introduction and Main Resultsmentioning
confidence: 99%
“…1.16.1]. This approach, using curvature dimension conditions to obtain gradient bounds, was initiated in Bakry andÉmery [BE85]. The curvature dimension condition on graphs, the non-diffusion case, was first introduced by Lin and Yau [LY10] which serves as a combination of a lower bound of Ricci curvature and an upper bound of the dimension, see Definition 2.4 for an infinite dimensional version CD(K, ∞).…”
Section: Introduction and Main Resultsmentioning
confidence: 99%
“…Γ(cos r cos z, cos r cos z)dµ, and we compute SU (2) Γ(cos r cos z, cos r cos z)dµ = 1 2 , to conclude.…”
Section: Su(2)mentioning
confidence: 93%
“…Γ(ln p t , p t )dµ = − SU (2) ln p t Lp t dµ = − ∂ ∂t SU(2) p t ln p t dµ Moreover, thanks to Proposition 4.6, there exists a constant C > 0 such that tΓ(ln p t , ln p t )( √ tr, tz) ≤ C, t ∈ (0, 1).…”
Section: Su(2)mentioning
confidence: 94%
See 1 more Smart Citation
“…Flow. Consider the flow associated to L , that is (10) ∂g ∂t = L g , and observe that if we can guarantee that f ≡ 0 along the evolution determined by (10). This is the case if assume that f (x) = f (−x) for any x ∈ [−1, 1].…”
mentioning
confidence: 99%