DIFLD: domain invariant feature learning to detect low-quality compressed face forgery images
Yan Zou,
Chaoyang Luo,
Jianxun Zhang
Abstract:With the rapid development of deep learning, face forgery detection methods have also achieved remarkable progress. However, most methods suffer significant performance degradation on low-quality compressed face images. It is due to: (a) The image artifacts will be blurred in the process of image compression, resulting in the model learning insufficient artifact traces; (b) Low-quality images will introduce a lot of noise information, and minimizing the training error causes the model to absorb all correlation… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.