The newly emerging tissue microbiota hypothesis suggests that bacteria found in blood and tissues play a role in host health, as these bacterial communities have been associated with various noncommunicable diseases such as obesity, liver disease, and cardiovascular disease. Numerous reports have identified bacteria in the blood of healthy finfish, indicating bacteremia may not always indicate disease. Current research priorities in aquaculture include the development of technologies and practices that will allow for an effective reduction in antibiotic use for the prevention and treatment of disease. Overall, a better understanding of fish health is needed, particularly among species selected for commercial-scale production. This study investigated blood characteristics of cultured Red Drum Sciaenops ocellatus with the tissue microbiota hypothesis in mind. Bacterial assemblages within the blood were characterized using nextgeneration sequencing and compared with other various blood characteristics, including innate immune function enzymes, between two fish cohorts reared in aquaculture. A total of 137 prokaryotic operational taxonomic units (OTUs) were identified from the blood of Red Drum. Microbiota diversity and structure varied greatly among individuals, for which the number of OTUs ranged from 4 to 58; however, predicted metagenomic function was highly similar between individuals and was dominated by the metabolism of carbohydrates and amino acids and membrane transport. Communities were dominated by Proteobacteria, followed by Bacteroidetes, Firmicutes, and Actinobacteria. The most commonly identified genera included Acinetobacter, Bacillus, Corynebacterium, and Pseudomonas. Three genera previously identified as containing marine fish pathogens were detected: Corynebacterium, Pantoea, and Chryseobacterium. A subset of bacterial OTUs were positively correlated with superoxide dismutase activity and negatively correlated with lysozyme activity, indicating a relationship between blood microbiota and the innate immune system. The results of this study provide further evidence for the tissue microbiota hypothesis and demonstrate the potential for these bacterial communities to be linked to immunological characteristics often used as biomarkers for fish health.Aquaculture currently provides over 50% of the global fish supply (FAO 2018). As a large proportion (>90%) of wild-caught fish stocks are fully fished or overfished with no room for expansion (FAO 2018), aquaculture production will have to increase by 37% by the year 2030 in order to provide seafood for the growing human population (FAO 2018). Along with foodfish production, aquaculture can also raise fish for stock enhancement purposes, helping to *Corresponding