Elasmobranchs are considered to be top marine predators, and in general play important roles in the transfer of energy within marine ecosystems. Despite this, little is known regarding the physiological processes of digestion and nutrient absorption in these fishes. One topic that is particularly understudied is the process of nutrient uptake across the elasmobranch gastrointestinal tract. Given their carnivorous diet, the present study sought to expand knowledge on dietary nutrient uptake in elasmobranchs by focusing on the uptake of products of protein digestion. To accomplish this, a full-length cDNA encoding peptide transporter 1 (PepT1), a protein previously identified within the brush border membrane of vertebrates that is responsible for the translocation of peptides released during digestion by luminal and membrane-bound proteases, was isolated from the bonnethead shark (Sphyrna tiburo). A cDNA encoding the related peptide transporter PepT2 was also isolated from S. tiburo using the same methodology. The presence of PepT1 was then localized in multiple components of the bonnethead digestive tract (esophagus, stomach, duodenum, intestine, rectum, and pancreas) using immunohistochemistry. Vesicle studies were used to identify the apparent affinity of PepT1 and to quantify the rate of dipeptide uptake by its H(+)-dependent cotransporter properties. The results of this study provide insight into the properties of peptide uptake within the bonnethead gut, and can facilitate future work on physiological regulation of protein metabolism and absorption including how these processes may vary in elasmobranchs that exhibit different feeding strategies.