Abstract-Electromagnetic levitation system is commonly used in the field of magnetic levitation system train. Magnetic levitation technology is one of the most promised issue of transportation and precision engineering. Magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. In this paper, a new prototype of the magnetic levitation system is proposed, designed and successfully tested via SIMLAB platform in real time. In addition, the proposed system was implemented with an efficient controller, which is linear-quadratic regulator (LQR) and compared with a classical controller which is proportional-integral-derivative (PID). The present system has been tested with two different criteria: signal test and load test under different input signals which are Sine wave and Squar wave. The findings prove that the suggested levitation system reveals a better performance than conventional one. Moreover, the LQR controller produced a great stability and optimal response compared to PID controller used at same system parameters.