Dual view transport of intensity phase microscopy is adopted to quantitatively study the regulation of adenosine triphosphate (ATP) on cellular mechanics. It extracts cell phases in real time from simultaneously captured under-and over-focus images. By computing the root-mean-square phase and correlation time, it is found that the cellular fluctuation amplitude and speed increased with ATP compared to those with ATP depletion. Besides, when adenylyl-imidodiphosphate (AMP-PNP) was introduced, it competed with ATP to bind to the ATP binding site, and the cellular fluctuation amplitude and speed decreased. The results prove that ATP is a factor in the regulation of cellular mechanics. To our best knowledge, it is the first time that the dual view transport of intensity phase microscopy was used for live cell phase imaging and analysis. Our work not only provides direct measurements on cellular fluctuations to study ATP regulation on cellular mechanics, but it also proves that our proposed dual view transport of intensity phase microscopy can be well used, especially in quantitative phase imaging of live cells in biological and medical applications.