In order to study digital topological properties of a k-surface in Z n , we generalize the topological number in Bertrand (Pattern Recogn. Lett. 15:1003-1011, 1994. Furthermore, we show that a local (k 0 , k 1 )-isomorphism preserves some digital-topological properties, such as a generalized topological number and a simple k 0 -point, and prove that a local (k 0 , k 1 )-isomorphism takes a simple k 0 -surface in Z n 0 into a simple k 1 -surface in Z n 1 .Keywords Digital k-surface · Digital k-fundamental group · Simple k-curve point · Generalized topological number · Generalized geodesic neighborhood · Local (k 0 , k 1 )-isomorphism · Discrete topology Mathematics Subject Classification (2000) 52xx · 55Q70 · 52Cxx · 55P10 · 55P15 · 68U05