Liver fibrosis recognition is an important issue in diagnostic imaging. The accurate estimation of liver fibrosis stages is important to establish prognosis and to guide appropriate treatment decisions. Liver biopsy has been for many years the reference procedure to assess histological definition for liver diseases. But biopsy measurement is an invasive method besides it takes large time. So, fast and improved methods are needed. Using elastography technology, a correlation technique can be used to calculate the displacement of liver tissue after it has suffered a compression force. This displacement is related to tissue stiffness, and liver fibrosis can be classified into stages according to that displacement. The value of compression force affects the displacement of tissue and so affects the results of the liver fibrosis diagnosing. By using finite element method, liver fibrosis can be recognized directly within a short time. The proposed work succeeded in recognizing liver fibrosis by a percent reached in average to 86.67% on a simulation environment.