A steel slag porous asphalt (SSPA) mixture, as the surfacing layer of permeable asphalt pavements, not only ensures the pavement surface drainage and noise reduction functions, but also improves the comprehensive utilization of steel slag resources and the inherent protection of the ecological environment. However, compared with ordinary asphalt mixtures, SSPA is more susceptible to water damage, such as scouring and frost swelling caused by external rainwater intrusion, resulting in the deterioration of the pavement performance. Therefore, it is of good practical imperative to study the water stability and moisture damage mechanism of SSPAs. In this study, the water stability of SSPA, that was subjected to a series of time–temperature H2O-immersion schemes, was investigated using the pull-out and H2O-immersion Marshall tests, whilst the microscopic mechanism of moisture damage was studied using the scanning electron microscopy (SEM), Fourier infrared spectroscopy (FTIR), and X-ray diffraction (XRD) tests. The corresponding results showed that: (a) with the increase in the H2O immersion time, the water stability of SSPA first increased and then decreased; and (b) the water stability of SSPA was strong under medium-temperature H2O-immersion or short-term high-temperature H2O-immersion. SEM, on the other hand, showed that the transition zone spacing was closely related to the chemical adhesion mechanism between the asphalt and steel slag aggregate. Additionally, the FTIR analysis further showed that the steel slag asphalt mastic spectra had new absorption peaks at 3200~3750 cm−1, inherently indicating the existence of chemical bonding between the asphalt and steel slag, with the XRD results showing that CaSO4·2H2O had a beneficial effect on the water stability of SSPA.