Malaria is a blood disease caused by the Plasmodium parasite that is transmitted through the bite of female Anopheles mosquitoes. These mosquitoes can cross borders without passports or visas, making malaria a global health concern. To effectively treat malaria, infectious disease specialists must monitor the efficacy of the treatment by counting the number of parasites in a patient's blood at various time intervals. However, this task is challenging because it involves examining thin or thick blood smear samples under a microscope, which can be tiring to the human eye, particularly when there are many infected patients and a shortage of clinical experts. In such cases, rapid diagnosis is crucial. One approach is to capture microscopic images of blood smear samples using a camera and then employ deep learning-based object detection models to detect and count the infected red blood cells. In this study, state-of-the-art object detection models, including CenterNet, EfficientDet, Faster R-CNN, RetinaNet, and YOLOv8, were explored. The dataset was generated using thin blood smear images in the laboratory. The results revealed that YOLOv8s outperformed the other models, achieving