In this article, a method is proposed for analysing the thermovision-based video data that characterize the dynamics of temperature anisotropy of the heart tissue in a spatial domain. Many cardiac rhythm disturbances at present time are treated by applying destructive energy sources. One of the most common source and the related methodology is to use radio-frequency ablation procedure. However, the rate of the risk of complications including arrhythmia recurrence remains enough high. The drawback of the methodology used is that the suchlike destruction procedure cannot be monitored by visual spectra and results in the inability to control the ablation efficiency. To the end of understanding the nature of possible complications and controlling the treating process, the means of thermovision could be used. The aim of the study was to analyse possible mechanisms of these complications, measure and determine optimal radio-frequency ablation parameters, according to the analysis of video data, acquired using thermovision.