Sixth International Conference on Computational Intelligence and Multimedia Applications (ICCIMA'05)
DOI: 10.1109/iccima.2005.23
|View full text |Cite
|
Sign up to set email alerts
|

Digital Modulation Identification by Wavelet Analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 6 publications
0
1
0
Order By: Relevance
“…To demonstrate the effectiveness of the proposed AMC method based on GCN, we compared the performance of the proposed method with those state-of-the-art AMC methods. The achieved methods include deep learning methods (basic CNN [44], InceptionV3 [45], GAN [29], VGGnet [30], ResNet [46,47], LSTM [48,49], deep complex network (DCN) [1]), and feature extraction methods (HOC [3,4] using an SVM classifier, CS [50] with a neural network classifier, and continuous wavelet transform (CWT) [11,51] with an SVM classifier). We carried out the comparison experiments in Ch1 and Ch2, respectively.…”
Section: The Analysis Of the Influence Of The Different Featuresmentioning
confidence: 99%
“…To demonstrate the effectiveness of the proposed AMC method based on GCN, we compared the performance of the proposed method with those state-of-the-art AMC methods. The achieved methods include deep learning methods (basic CNN [44], InceptionV3 [45], GAN [29], VGGnet [30], ResNet [46,47], LSTM [48,49], deep complex network (DCN) [1]), and feature extraction methods (HOC [3,4] using an SVM classifier, CS [50] with a neural network classifier, and continuous wavelet transform (CWT) [11,51] with an SVM classifier). We carried out the comparison experiments in Ch1 and Ch2, respectively.…”
Section: The Analysis Of the Influence Of The Different Featuresmentioning
confidence: 99%