This paper reviews key ideas and performances of the enhanced roll powder sintering (RPS) by inkjet technology. A modification of the RPS technology aims to improve precision, reliability and lower-priced hardware, and power consumption is proposed. RPS allows accomplishing designs, which are impossible, very expensive and difficult to create using other methods. A new version has increased reliability, higher perforation precision (up to 9600 dpi), lower cost and power consumption. It is based on the commercially available inexpensive components. Various specifications of laser and inkjet perforation of one-layer, compressible ribbon are reviewed. An enhanced RPS technology could make a significant contribution to the micromanufacturing, micro-forming, jewellery, stomatology and many other industries where there are needs of processing plastic, ceramic, metal and other objects. The RPS technology offers a new way to produce more accurate micro-scale products with better smooth surfaces. It has the potential to create parts about 1-1.5 l (or more) in volume with layer thickness about 3-5 μm and print width of 0.297 m directly from a 3D CAD model with processing time about an hour. The advantages of the inkjet perforation are compared to the RPS prototype based on laser systems.