Nowadays, cyber-physical systems (CPSs) are composed of more and more agents and the demand for designers to develop ever larger multi-agent systems is a fact. When the number of agents increases, several challenges related to control or communication problems arise due to the lack of scalability of existing solutions. It is important to develop tools that allow control strategies evaluation of large-scale systems. In this paper, it is considered that a CPS is a heterogeneous robot multi-agent system that cooperatively performs a formation task through a wireless network. The goal of this research is to evaluate the system’s performance when the number of agents increases. To this end, two different frameworks developed with the open-source tools Gazebo and Webots are used. These frameworks enable combining both real and virtual agents in a realistic scenario allowing scalability experiences. They also reduce the costs required when a significant number of robots operate in a real environment, as experiences can be conducted with a few real robots and a higher number of virtual robots by mimicking the real ones. Currently, the frameworks include several types of robots, such as the aerial robot Crazyflie 2.1 and differential mobile robots Khepera IV used in this work. To illustrate the usage and performance of the frameworks, an event-based control strategy for rigid formations varying the number of agents is analyzed. The agents should achieve a formation defined by a set of desired Euclidean distances to their neighbors. To compare the scalability of the system in the two different tools, the following metrics have been used: formation error, CPU usage percentage, and the ratio between the real time and the simulation time. The results show the feasibility of using Robot Operating System (ROS) 2 in distributed architectures for multi-agent systems in experiences with real and virtual robots regardless of the number of agents and their nature. However, the two tools under study present different behaviors when the number of virtual agents grows in some of the parameters, and such discrepancies are analyzed.