Digital Twin/MARS‐CycleGAN: Enhancing Sim‐to‐Real Crop/Row Detection for MARS Phenotyping Robot Using Synthetic Images
David Liu,
Zhengkun Li,
Zihao Wu
et al.
Abstract:Robotic crop phenotyping has emerged as a key technology for assessing crops' phenotypic traits at scale, which is essential for developing new crop varieties with the aim of increasing productivity and adapting to the changing climate. However, developing and deploying crop phenotyping robots faces many challenges, such as complex and variable crop shapes that complicate robotic object detection, dynamic and unstructured environments that confound robotic control, and real‐time computing and managing big data… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.