Steel structures face significant challenges in long-term maintenance because of complex and unstable service environments. Fortunately, the digital twin technique offers an excellent solution by creating a digital model and continuously updating it with real-time monitoring data. To determine the development and application status of the digital twin technique in steel structures, a review drawn on the latest literature from the past fifteen years was conducted. The bibliometric analysis and innovation discussion of these studies primarily focused on publication details, keyword information, and application specifics. Additionally, significant attention was given to the evolution of digital twin definitions, modeling methodologies, and application fields. The analysis results indicate that the digital twin technique in steel structures has made significant advancements in both its definition and modeling methodologies, thanks to worldwide contributions. Meanwhile, this technique also demonstrates advantages in the applications of material deformation, structural monitoring, infrastructure maintenance, and fatigue assessment. Based on this review of the existing literature, the future development of the digital twin technique in steel structures should focus on model innovation, application expansion, and performance optimization.