Wave energy is a renewable energy source with the potential to contribute to the global electricity demand, but a remaining challenge is the survivability of the wave energy converters in harsh offshore conditions. To understand the system dynamics and improve the reliability, experimental and numerical studies are usually conducted. However, these processes are costly and time-consuming. A statistical model able to provide equivalent results is a promising approach. In this study, the digital twin of the CFD solution is developed and implemented for the prediction of the force in the mooring system of a point-absorber wave energy converter during extreme wave conditions. The results show that the digital twin can predict the mooring force with 90.36% average accuracy. Moreover, the digital twin needs only a few seconds to provide the solution, while the CFD code requires up to several days. By creating a digital analog of a wave energy converter and showing that it is able to predict the load in critical components during extreme wave conditions, this work constitutes an innovative approach in the wave energy field.