Human pose estimation finds its application in an extremely wide domain and is therefore never pointless. We propose in this paper a new approach that, unlike any prior one that we are aware of, bypasses the 2D keypoint detection step based on which the 3D pose is estimated, and is thus pointless. Our motivation is rather straightforward: 2D keypoint detection is vulnerable to occlusions and out-of-image absences, in which case the 2D errors propagate to 3D recovery and deteriorate the results. To this end, we resort to explicitly estimating the human body regions of interest (ROI) and their 3D orientations. Even if a portion of the human body, like the lower arm, is partially absent, the predicted orientation vector pointing from the upper arm will take advantage of the local image evidence and recover the 3D pose. This is achieved, specifically, by deforming a skeleton-shaped puppet template to fit the estimated orientation vectors. Despite its simple nature, the proposed approach yields truly robust and state-of-the-art results on several benchmarks and in-the-wild data.