The adaptor protein-1 (AP-1) complex is involved in membrane transport between the Golgi apparatus and endosomes. In the protozoan parasite Leishmania mexicana mexicana, the AP-1 1 and 1 subunits are not required for growth at 27°C but are essential for infectivity in the mammalian host. In this study, we have investigated the function of these AP-1 subunits in order to understand the molecular basis for this loss of virulence. The 1 and 1 subunits were localized to late Golgi and endosome membranes of the major parasite stages. Parasite mutants lacking either AP-1 subunit lacked obvious defects in Golgi structure, endocytosis, or exocytic transport. However, these mutants displayed reduced rates of endosome-to-lysosome transport and accumulated fragmented, sterol-rich lysosomes. Defects in flagellum biogenesis were also evident in nondividing promastigote stages, and this phenotype was exacerbated by inhibitors of sterol and sphingolipid biosynthesis. Furthermore, both AP-1 mutants were hypersensitive to elevated temperature and perturbations in membrane lipid composition. The pleiotropic requirements for AP-1 in membrane trafficking and temperature stress responses explain the loss of virulence of these mutants in the mammalian host.