Dimensionality Reduction for Persistent Homology with Gaussian Kernels
Jean-Daniel Boissonnat,
Kunal Dutta
Abstract:Computing persistent homology using Gaussian kernels is useful in the domains of topological data analysis and machine learning as shown by Phillips, Wang and Zheng [SoCG 2015]. However, contrary to the case of computing persistent homology using the Euclidean distance or even the k-distance, it is not known how to compute the persistent homology of high dimensional data using Gaussian kernels. In this paper, we consider a power distance version of the Gaussian kernel distance (GKPD) given by Phillips, Wang a… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.