The past seventeen years have witnessed tremendous progress on the experimental and theoretical explorations of the multiquark states. The hidden-charm and hidden-bottom multiquark systems were reviewed extensively in Ref. [1]. In this article, we shall update the experimental and theoretical efforts on the hidden heavy flavor multiquark systems in the past three years. Especially the LHCb collaboration not only confirmed the existence of the hidden-charm pentaquarks but also provided strong evidence of the molecular picture. Besides the well-known XY Z and P c states, we shall discuss more interesting tetraquark and pentaquark systems either with one, two, three or even four heavy quarks. Some very intriguing states include the fully heavy exotic tetraquark states QQ Q Q and doubly heavy tetraquark states QQq q, where Q is a heavy quark. The QQ Q Q states may be produced at LHC while the QQq q system may be searched for at BelleII and LHCb. Moreover, we shall pay special attention to various theoretical schemes such as the chromomagnetic interaction (CMI), constituent quark model, meson exchange model, heavy quark and heavy diquark symmetry, QCD sum rules, Faddeev equation for the three body systems, Skyrme model and the chiral quark-soliton model, and the lattice QCD simulations. We shall emphasize the model-independent predictions of various models which are truly/closely related to Quantum Chromodynamics (QCD). For example, the chromomagnetic interaction arises from the gluon exchange which is fundamental and universal in QCD and responsible for the mixing and mass splitting of the conventional mesons and baryons within the same multiplet. The same CMI