BackgroundThis study aimed to investigate the relationship between the dynamic changes of estimated glomerular filtration rate (eGFR) in the early stage post renal transplantation and renal allograft dysfunction.MethodsWe selected 9 patients with interstitial fibrosis and tubular atrophy (IF/TA) and 11 patients with stable renal function based on the Banff 2007 classification system. Pathology of the patients was evidenced with renal biopsy results. Glomerular filtration rate (GFR) was calculated continuously for 14 days post-transplantation by using an estimated GFR (eGFR) formula adjusted into Chinese. Linear regression was employed, and eGFR slopes were compared. Prisoners or organs from prisoners were not used in this study.Results and ConclusionThe eGFR slope in the IF/TA group was significantly higher than that in the stable group (P < 0.01), and a cut-off value of 5.11 mL/min/1.73 m2/d was a reliable clinical value in a receiver operating characteristic (ROC) curve. On the basis of the ROC area under the curve, predictive accuracy of the eGFR slope was excellent (0.848). In conclusion, the eGFR in IF/TA increased faster within a period of 14 days post-transplantation, suggesting that reperfusion in the early stage may damage the glomerular filtration membrane to some extent. Furthermore, reperfusion might adversely affect long-term renal allograft survival.