The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas axis represents a promising target for inducing stroke neuroprotection. Here, explored stroke-induced changes in expression and activity of endogenous angiotensin converting enzyme 2 and other system components in Sprague Dawley rats. To evaluate the clinical feasibility of treatments that target this axis and that may act in synergy with stroke-induced changes, we also tested the neuroprotective effects of diminazene aceturate, an angiotensin converting enzyme 2 activator, administered systemically post-stroke. Amongst rats that underwent experimental endothelin-1-induced ischemic stroke, angiotensin converting enzyme 2 activity in the cerebral cortex and striatum increased in the 24 hours after stroke. Serum angiotensin converting enzyme 2 activity was decreased within 4h post stroke, but rebounded to reach higher than baseline levels 3d post-stroke. Treatment following stroke with systemically-applied diminazene resulted in decreased infarct volume and improved neurological function without apparent increases in cerebral blood flow. Central infusion of A-779, a Mas receptor antagonist, resulted in larger infarct volumes in diminazene-treated rats, and central infusion of the angiotensin converting enzyme 2 inhibitor MLN-4760 alone worsened neurological function. The dynamic alterations of the protective angiotensin converting enzyme 2 pathway following stroke suggest that it may be a favorable therapeutic target. Indeed, significant neuroprotection resulted from post-stroke angiotensin converting enzyme 2 activation, likely via Mas signaling in a blood flow-independent manner. Our findings suggest that stroke therapeutics that target the angiotensin converting enzyme 2/angiotensin-(1-7)/Mas axis may interact cooperatively with endogenous stroke-induced changes, lending promise to their further study as neuroprotective agents.