Abstract:In Geostatistics, the use of measurement to describe the spatial dependence of the attribute is of great importance, but only some models (which have second-order stationarity) are considered with such measurement. Thus, this paper aims to propose measurements to assess the degree of spatial dependence in power model adjustment phenomena. From a premise that considers the equivalent sill as the estimated semivariance value that matches the point where the adjusted power model curves intersect, it is possible to build two indexes to evaluate such dependence. The first one, SPD * , is obtained from the relation between the equivalent contribution (α) and the equivalent sill (C * = C0 + α), and varies from 0 to 100% (based on the calculation of spatial dependence areas). The second one, SDI * , beyond the previous relation, considers the equivalent factor of model (FM * ), which depends on the exponent β that describes the force of spatial dependence in the power model (based on spatial correlation areas). The SDI * , for β close to 2, assumes its larger scale, varying from 0 to 66.67%. Both indexes have symmetrical distribution, and allow the classification of spatial dependence in weak, moderate and strong.Keywords: Geostatistics; Variographic analysis; Semivariogram without sill; Spatial dependence indexes.
Resumo:Em geoestatística, a utilização de medidas que descrevam a dependência espacial do atributo é de grande importância, porém apenas alguns modelos (que possuem estacionariedade de segunda ordem) são contemplados com tais medidas. Assim, este trabalho tem como objetivo propor medidas para avaliação do grau de dependência espacial em fenômenos com ajuste de modelo Barbosa, I. C. et al. 462 Bull. Geod. Sci, Articles section, Curitiba, v. 23, n°3, p.461 -475, Jul -Sept, 2017. potência. A partir de uma premissa que considera o patamar-equivalente como o valor de semivariância que coincide com o ponto em que as curvas ajustadas do modelo potência se interceptam, pode-se construir dois índices para avaliação de tal dependência. O primeiro, DE * , é obtido a partir da relação entre a contribuição-equivalente (α) e o patamar-equivalente (C * = C0 + α), e varia de 0 a 100% (baseado no cálculo de áreas de dependência espacial). O segundo, IDE * , além da relação anterior, considera um fator de modelo equivalente (FM * ), que depende do expoente β, o qual descreve a força da dependência espacial no modelo potência (baseado em áreas de correlação espacial). O IDE * , para β próximo de 2, assume sua maior escala, variando de 0 a 66.67%. Ambos os índices possuem distribuição simétrica, e permitem a classificação da dependência espacial em fraca, moderada e forte.