ABSTRACT. The dinoflagellate Tintinnophagus acutus n. g., n. sp., an ectoparasite of the ciliate Tintinnopsis cylindrica Daday, superficially resembles Duboscquodinium collini Grassé, a parasite of Eutintinnus fraknoii Daday. Dinospores of T. acutus are small transparent cells having a sharply pointed episome, conspicuous eyespot, posteriorly positioned nucleus with condensed chromosomes, and rigid form that may be supported by delicate thecal plates. Dinospores attach to the host via a feeding tube, losing their flagella, sulcus, and girdle to become spherical or ovoid cells. The trophont of T. acutus feeds on the host for several days, increasing dramatically in size before undergoing sporogenesis. Successive generations of daughter sporocytes are encompassed in an outer membrane or cyst wall, a feature not evident in trophonts. Tintinnophagus acutus differs from D. collini in host species, absence of a second membrane surrounding pre‐sporogenic stages, and failure to differentiate into a gonocyte and a trophocyte at the first sporogenic division. Phylogenetic analyses based on small subunit (SSU) ribosomal DNA (rDNA) sequences placed T. acutus and D. collini in the class Dinophyceae, with T. acutus aligned loosely with Pfiesteria piscicida and related species, including Amyloodinium ocellatum, a parasite of fish, and Paulsenella vonstoschii, a parasite of diatoms. Dubosquodinium collini nested in a clade composed of several Scrippsiella species and Peridinium polonicum. Tree construction using longer rDNA sequences (i.e. SSU through partial large subunit) strengthened the placement of T. acutus and D. collini within the Dinophyceae.