Pyruvate formate-lyase
activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs
a catalytically essential glycyl radical on pyruvate formate-lyase.
We show that PFL-AE binds a catalytically essential monovalent cation
at its active site, yet another parallel with B12 enzymes,
and we characterize this cation site by a combination of structural,
biochemical, and spectroscopic approaches. Refinement of the PFL-AE
crystal structure reveals Na+ as the most likely ion present
in the solved structures, and pulsed electron nuclear double resonance
(ENDOR) demonstrates that the same cation site is occupied by 23Na in the solution state of the as-isolated enzyme. A SAM
carboxylate-oxygen is an M+ ligand, and EPR and circular
dichroism spectroscopies reveal that both the site occupancy and the
identity of the cation perturb the electronic properties of the SAM-chelated
iron–sulfur cluster. ENDOR studies of the PFL-AE/[13C-methyl]-SAM complex show that the target sulfonium positioning
varies with the cation, while the observation of an isotropic hyperfine
coupling to the cation by ENDOR measurements establishes its intimate,
SAM-mediated interaction with the cluster. This monovalent cation
site controls enzyme activity: (i) PFL-AE in the absence of any simple
monovalent cations has little–no activity; and (ii) among monocations,
going down Group 1 of the periodic table from Li+ to Cs+, PFL-AE activity sharply maximizes at K+, with
NH4+ closely matching the efficacy of K+. PFL-AE is thus a type I M+-activated enzyme whose
M+ controls reactivity by interactions with the cosubstrate,
SAM, which is bound to the catalytic iron–sulfur cluster.