We present a new method to measure neutrino masses using the dark matter-neutrino relative velocity. The relative motion between dark matter and neutrinos results in a parity-odd bispectrum which can be measured from cross-correlation of different cosmic fields. This new method is not affected by most systematics which are parity even and not limited by the knowledge of optical depth to the cosmic microwave background. We estimate the detectability of the relative velocity effect and find that the minimal sum of neutrino masses could be detected at high significance with upcoming surveys.