Light-powered fuel-free colloidal motors possess significant potential for practical applications ranging from nanomedicine to environmental remediation. However, current lightpowered colloidal motors often require the incorporation of expensive metals or high concentrations of toxic chemical fuels, which is a severe limitation for their practical applications. Integrating highly ordered and porous materials with a large surface area into colloidal motors is a promising strategy for upsurging their self-propelled speed and adsorption, which will benefit many applications. Here, highly efficient, fuel-free, and light-activated metal organic framework (MOF)-3trimethoxysilyl propyl methacrylate Janus colloidal motors with a hierarchical morphology are reported. These colloidal motors can be driven by UV or visible light, with a self-propelled speed tuned by the light intensity. The speed can be further enhanced by morphology optimization or by the addition of H 2 O 2 as a fuel. The colloidal motors display a superior efficiency in removing heavy metal ions of Hg, which is up to ∼90% within 40 min from the contaminated water, attributed to their high surface area, hierarchical morphology, large number of active sites, and high mobility. This work not only offers a facile approach to incorporate a versatile MOF family into the design of fuel-free and light-powered Janus colloidal motors, but also demonstrates their potential for real-life applications such as environmental remediation.