SummaryA combination of 3'-azido-3'-deoxythymidine (AZT) with 3'-fluoro-3'-deoxythymidine (FLT) has been shown previously to give synergistic inhibition of human immunodeficiency virus replication and greatly reduced cytotoxicity in vitro. The phosphorylation of the compounds, and their effect upon the natural deoxynucleoside triphosphate pools, were compared in CEM, H9, and HIV-infected H9/ymphoblastoid cells, both for the compounds when used alone and when combined together.Higher levels of FLT triphosphate than AZT triphosphate, and higher levels of AZT monophosphate than FLT monosphosphate, were formed in all cell types. Both compounds were phosphorylated most efficiently in CEM cells, whereas they were least efficiently phosphorylated in infected H9 cells.Owing to competition, the phosphorylation of both analogues was reduced when used in combination, compared to the phosphorylation of the separate compounds. The phosphorylation of the separate compounds was therefore at a maximum and was not increased by combining the compounds. The two compounds competed equally with each other for phosphorylation when used at a ratio of AZT: FLT of 5:1.Both analogues severely reduced the deoxynucleoside triphosphate pools in uninfected and human immunodeficiency virus-infected H9 cells, but not in CEM cells. The effects of the two compounds were similar to those found when the compounds were combined, and thus H9 cells were shown to be much more sensitive to the effects of the analogues upon deoxynucleoside triphosphate pools than CEM cells were.Received