We provide an overview of recent advances in microelectrochemical approaches to investigate the kinetics of various physicochemical processes that occur at the interface between two immiscible electrolyte solutions (ITIES). To place the advances in context, background material on the structure of the ITIES, derived from both experimental studies and computer simulation, is also provided. The main focus of the article is micro-ITIES techniques, single droplet measurements, microelectrochemical measurements at expanding droplets (MEMED) and scanning electrochemical microscopy (SECM). Recent developments in a combined SECM-Langmuir trough technique for probing diffusion processes across Langmuir monolayers at the water/air (W/A) interface are also highlighted, by considering an organic monolayer at a water surface as a special case of a liquid/liquid interface.