Cacao seeds,
Theobroma cacao
, provide the basis for a ceremonially important Mesoamerican food. Past efforts to identify cacao in ceramics focused on highly decorative vessel forms associated with elite ceremonial contexts, creating assumptions as to how cacao was distributed and who could access it. This study examines 54 archaeological ceramic sherds from El Pilar (Belize/Guatemala) of Late Classic (600 to 900 CE) residential and civic contexts representing a cross-section of ancient Maya inhabitants. Identification of cacao in ancient sherds has depended on the general presence of theobromine; we used the discrete presence of theophylline, a unique key biomarker for cacao in the region. Analysis was done by grinding off all outside surfaces to reduce contamination, pulverizing the inner clay matrix, extracting absorbed molecules, and concentrating the extractions. In order to obtain especially high selectivity and low limits of detection, our study utilized the technique of resonance-enhanced multiphoton ionization coupled with laser-desorption jet-cooling mass spectrometry. This technique isolates molecules in the cold gas phase where they can be selectively ionized through a resonant two-photon process. Of the sherds analyzed, 30 samples (56%) were found to contain significant amounts of theophylline and thus test positive for cacao. Importantly, cacao is present in all contexts, common to all Maya residents near and far from centers.