Herein, we investigated the potential of plasma-activated water (PAW) as a wash solution for the microbial decontamination of cherry tomatoes. We analyzed the efficacy of PAW as a bactericidal agent based on reactive species and pH. Immersion for 5 min in PAW15 (generated via plasma activation for 15 min) was determined as optimal for microbial decontamination of fresh produce. The decontamination efficacy of PAW15 exceeded those of mimic solutions with equivalent reactive species concentrations and pH (3.0 vs. 1.7 log reduction), suggesting that the entire range of plasma-derived reactive species participates in decontamination rather than a few reactive species. PAW15-washing treatment achieved reductions of 6.89 ± 0.36, 7.49 ± 0.40, and 5.60 ± 0.05 log10 CFU/g in the counts of Bacillus cereus, Salmonella sp., and Escherichia coli O157:H7, respectively, inoculated on the surface of cherry tomatoes, with none of these strains detected in the wash solution. During 6 days of 25 °C storage post-washing, the counts of aerobic bacteria, yeasts, and molds were below the detection limit. However, PAW15 did not significantly affect the viability of RAW264.7 cells. These results demonstrate that PAW effectively inactivates microbes and foodborne pathogens on the surface of cherry tomatoes and in the wash solution. Thus, PAW could be used as an alternative wash solution in the fresh produce industry without cross-contamination during washing and environmental contamination by foodborne pathogens or potential risks to human health.