2021
DOI: 10.48550/arxiv.2112.06664
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Direct and inverse approximation theorems in the Besicovitch-Museilak-Orlicz spaces of almost periodic functions

Abstract: In terms of the best approximations of functions and generalized moduli of smoothness, direct and inverse approximation theorems are proved for Besicovitch almost periodic functions whose Fourier exponent sequences have a single limit point in infinity and their Orlicz norms are finite. Special attention is paid to the study of cases when the constants in these theorems are unimprovable.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?