Mass spectrometry (MS) has become an essential tool for the detection, identification, and characterization of the molecular components of biological processes, such as those responsible for the dynamic properties of the nervous system. Generally, the application of these powerful techniques requires the destruction of the specimen under study, but recent technological advances have made it possible to apply the matrix-assisted laser desorption/ionization (MALDI) MS technique directly to tissue sections. The major advantage of direct MALDI analysis is that it enables the acquisition of local molecular expression profiles, while maintaining the topographic integrity of the tissue and avoiding time-consuming extraction, purification, and separation steps, which have the potential for introducing artifacts. With automation and the ability to display complex spectral data using imaging software, it is now possible to create multiple 2D maps of selected biomolecules in register with tissue sections, a method now known as MALDI Imaging, or MSI (for Mass Spectrometry Imaging). This creates, for example, an opportunity to correlate functional states, determined a priori with live recording or imaging, with the corresponding molecular maps obtained at the time the tissue is frozen and analyzed with MSI. We review the increasing application of MALDI Imaging to the analysis of molecular distributions of proteins and peptides in nervous tissues of both vertebrates and invertebrates, focusing in particular on recent studies of neurodegenerative diseases and early efforts to implement assays of neuronal development.