This study investigated the use of a pure copper seed layer to improve the adhesion strength and reduce the residual stress of electroplated copper films for heterojunction technology in crystalline solar cells. The experiment involved depositing a copper seed layer and an indium tin oxide (ITO) layer on textured silicon using sputtering. This resulted in the formation of a Cu(s)/ITO/Si structure. Following this step, a 10 µm thick copper layer was electroplated onto the Cu(s)/ITO/Si structure. Various characterization techniques were employed to evaluate the electroplated copper films’ microstructures, residual stress, and adhesion strength. The microstructures of the films were examined using a scanning transmission electron microscope (STEM), revealing a twin structure with a grain size of approximately 1 µm. The residual stresses of the as-deposited and annealed samples were measured using an X-ray diffractometer (XRD), yielding values of 76.4 MPa and 49.1 MPa, respectively. The as-deposited sample exhibited higher tension compared to the annealed sample. To assess the adhesion strength of the electroplated copper films, peel-off tests were conducted at a 90° angle with a constant speed of 30 mm/min. The peel force, measured in units of N/mm, was similar for both the as-deposited and annealed samples. Specifically, the peel force for electroplating copper on the copper seed layer on the ITO was determined to be 2.6 N/mm for the maximum value and 2.25 N/mm for the average value. This study demonstrated that using a pure copper seed layer during electroplating can improve adhesion strength and reduce residual stress in copper films for heterojunction technology in crystalline solar cells. These findings contribute to the development of more reliable and efficient solar-cell-manufacturing processes.