The development of screening assays continues to be an active area of research in molecular diagnostics. Fluorescent microspheres conjugated to biomarkers (nucleic acids, proteins, lipids, carbohydrates) and analyzed on flow cytometer instruments offered a new approach for multiplexed detection platform in a suspension format. Quantum dots encoded into synthetic microspheres have the potentials to improve current screening bioassays and specifically suspension array technology. In this paper, commercialized quantum dot-encoded microsphere were evaluated and optimized as fluorescent probes to address some of the limitations of suspension array technologies. A comprehensive study was undertaken to adapt the bioconjugation procedure to the quantum dot-encoded microsphere structural and optical properties. Both the leaching-out of quantum dots and microspheres degradation under bioconjugation experimental conditions were minimized. A rapid, efficient and reproducible conjugation method was developed for the detection of single-stranded DNA with the commercialized quantum dot-encoded microsphere. Approximately ten thousand microspheres were conjugated to short amino-modified DNA sequences in one hour with high efficiency. The bioconjugated microspheres acting as fluorescent probes successfully detected a DNA target in suspension with high specificity. Quantum dot-encoded microsphere commercial products are limited which strongly prevents reproducible and comparative studies between laboratories. The method developed here contributes to the understanding of quantum dot-encoded microsphere reactivity, and to the optimization of adapted experimental procedure. This step is essential in the development of this new fluorescent probe technology for multiplex genotyping assay and molecular diagnostic applications.