Overexpression of ErbB2 is found in several types of human carcinomas. In breast tumors, ErbB2 overexpression is detected in up to 20% of patients. Breast cancers in with ampliication of ErbB2 are characterized by rapid tumor growth, lower survival rate and increased disease progression. The molecular mechanisms underlying the oncogenic action of ErbB2 involve a complex signaling network that tightly regulates malignant cell migration and invasion and hence metastatic potential. Recent eforts have been made to identify gene expression signatures of ErbB2-positive invasive breast cancers that may represent important mediators of ErbB2-induced tumorigenesis and metastatic progression.In this chapter, we will discuss the canonical ErbB2 signaling pathways responsible for tumor growth and dissemination along with newly identiied mediators such as adaptor protein p130Cas and miRNAs. From a therapeutic point of view, the treatment with anti-ErbB2 monoclonal antibody trastuzumab has greatly improved the outcomes of patients with ErbB2 aggressive cancer. Nevertheless, de novo and acquired resistance to trastuzumab therapy still represent a major clinical problem. In the second part of the chapter, we will provide an overview of the mechanisms so far implicated in the onset of resistance to targeted therapy and of the new strategies to overcome resistance.