We describe the new coherent nano-area electron diffraction (NED) and its application for structure determination of individual nanostructures. The study is motivated by the challenge and the general lack of analytical techniques for characterizing nanometer-sized, heterogeneous phases. We show that by focusing electrons on the focal plane of the pre-objective lens using a 3rd condenser lens and a small condense aperture, it is possible to achieve a nanometer-sized highly parallel illumination or probe. The high angular resolution of diffraction pattern from the parallel illumination allows over-sampling and consequently the solution of phase problem based on the recently developed ab initio phase retrieval technique. From this, a high-contrast and high-resolution image can be reconstructed at resolution beyond the performance limit of the image-forming objective lens. The significance of NED for nanostructure characterization will be exemplified by single-wall carbon nanotubes and small metallic clusters. Imaging from diffraction patterns, or diffractive imaging, will be demonstrated using double-wall carbon nanotubes.