The improvement of drilling rig systems to ensure a reduction in unproductive time spent on lowering and lifting operations for replacing drilling tools and restoring the performance of drilling equipment units is an important task. At the same time, considerable attention is paid to the reliable and efficient operation of the braking systems of drilling rig winches. In the process of operation, the polymer pads periodically come into contact with the outer cylindrical surface of the metal pulley during braking, work in extreme conditions and wear out intensively, so they need periodic replacement. Tests were carried out on a modernized stand and in industrial conditions for the brakes of drilling winches. A methodology for evaluating the degradation of the brake pad friction surface during its operation is proposed. The assessment of the degradation degree is carried out based on the image of the brake pad surface using image processing techniques. Geometric transformations of the input image were performed to avoid perspective distortions caused by the concave shape of the brake pads and the spatial angle at which the image is acquired to avoid glares. The crack detection step was implemented based on the scale-space theory, followed by contour detection and skeletonization. The ratios of the area and perimeter of segmented and skeletonized cracks to the total area were chosen as integral characteristics of the degradation degree. With the help of scanning electron microscopy, the character of the destruction of the friction surface and the degradation of the polymer material was investigated. Experimental studies were performed, and the application of the proposed method is illustrated.