Regenerative potential of mesenchymal stem/stromal cells (MSCs) has led to their application in various cellular therapies. Since in vivo these cells are present in very low numbers, they need expansion in culture to get clinically relevant numbers; however, such long-term ex vivo manipulation leads to loss of their regenerative capacity. Although use of naïve MSCs is still the most common approach used in various therapies, several strategies, both genetic and pharmacological, are being tried out to boost the regenerative capacity of in vitro expanded MSCs. Such manipulations are very commonly reported for regeneration of various tissues like bone, cartilage, kidney, pancreas, and others. Likewise, several efforts have been made to investigate priming of MSCs to enhance their immunoregulatory activity, but such efforts have not been made to the same extent for enhancing the efficacy of hematopoietic stem cell transplantation (HSCT). Development of such approaches for HSCT would not only be useful for enhancing the transplantation efficacy of cord blood cells, which are fewer in numbers, and aged HSCs, which could be functionally compromised, but also for genetically modified HSCs, which are likely to be both, fewer in number and functionally compromised. This review specifically deals with application of ''primed'' MSCs in the scenario of HSCT.