In this work, we present photocatalysis as a greener alternative to conventional catalysis where harsh reaction conditions, temperature and/or pressure are needed. Photodegradation of organic pollutants is a cost-effective, eco-friendly solution for the decontamination of water and air, and is a field that has been continuously growing over the last decade. Plasmonic metal nanoparticles absorb light irradiation that is transferred to the chemical reaction in a different fashion. Furthermore, plasmonic nanostructures can be combined with other materials, such as semiconductors or a basic support, to create hybrid systems capable of overcoming certain challenges that photocatalysis is facing nowadays and to expand the photocatalytic response towards the whole visible-near infrared (Vis-NIR) ranges. The main objective of this work has been to in-situ synthesize plasmonic anisotropic gold nanoparticles onto hydrotalcite (HT) and calcined hydrotalcite (CHT) supports by way of a sequential deposition-reduction (DR) process and to evaluate their efficiency as heterogeneous catalysts towards the selective oxidation of p-nitrophenol (hereafter 4-NP), a well-known model contaminant, either in the absence or the presence of full-range light irradiation sources (LEDs) spanning the whole UV-Vis-NIR range. Special attention has been paid to the optimization of the catalyst preparation parameters, including the pH and the concentration of reducing and stabilizing agents. Interestingly, the use of thermally modified hydrotalcites has enabled a strong metal-support interaction to induce the preferential formation of triangular-shaped Au nanoparticles with ca. 0.8 wt.% loading while increasing the colloidal stability and surface area of the catalyst with respect to the commercial untreated HT supports.