Exploiting interfacial excess (Γ), Laplace pressure jump (ΔP), surface work, and coupling them to surface reactivity have led to the synthesis of undercooled metal particles. Metastability is maintained by a core-shell particle architecture. Fracture of the thin shell leads to solidification with concomitant sintering. Applying Scherer's constitutive model for loaddriven viscous sintering on the undercooled particles implies that they can form conductive traces. Combining metastability to eliminate heat and robustness of viscous sintering, an array of conductive metallic traces can be prepared, leading to plethora of devices on various flexible and/or heat sensitive substrates. Besides mechanical sintering, chemical sintering can be performed, which negates the need of either heat or load. In the latter, connectivity is hypothesized to occur via a Frenkel's theory of sintering type mechanism. This work reports heat-free, ambient fabrication of metallic conductive interconnects and traces on all types of substrates.