We demonstrate spin polarized jets in extended systems of ballistic exciton-polariton condensates in semiconductor microcavities using optical non-resonant excitation geometries. The structure of the spin jets is determined by the digitally reprogrammable, spatially non-uniform, degree of circular polarization of the excitation laser. The presence of the laser excitation, strong particle interactions, and spin-relaxation leads to a tunable spin-dependent potential landscape for polaritons, with the appearance of intricate polarization patterns due to coherent matter-wave interference. Our work realizes polarization-structured coherent light sources in the absence of gauge fields.