We performed measurements at helium temperatures of the electronic transport in an InAs quantum wire (R(wire) ∼ 30 kΩ) in the presence of a charged tip of an atomic force microscope serving as a mobile gate. The period and the amplitude of the observed quasi-periodic oscillations are investigated in detail as a function of electron concentration in the linear and non-linear regime. We demonstrate the influence of the tip-to-sample distance on the ability to locally affect the top subband electrons as well as the electrons in the disordered sea. Furthermore, we introduce a new method of detection of the subband occupation in an InAs wire, which allows us to evaluate the number of electrons in the conductive band of the wire.